Corning[®] Matrigel[®] Basement Membrane Matrix

Certified LDEV-free

delivered by VWI

VWR.COM

Corning Human Umbilical Vein Endothelial Cells (HUVEC-2) stained with Calcein AM and cultured on Corning Matrigel matrix.

Corning Matrigel basement membrane matrix is effective for the attachment and differentiation of both normal and transformed anchorage-dependent epithelioid and other cell types. These include neurons^{5,6}, Sertoli cells⁷, chick lens⁸, vascular endothelial cells⁹, and hepatocytes¹⁰. Matrigel matrix will influence gene expression in adult rat hepatocytes¹¹ as well as three-dimensional (3D) culture in mouse¹²⁻¹⁵ and human^{16,17} mammary epithelial cells. It will support *in vivo* peripheral nerve regeneration¹⁸⁻²⁰, can be used for metabolism and toxicology studies^{21,22}, and is the basis for several types of tumor cell invasion assays^{23,24}. Matrigel matrix provides the substrate necessary for the study of angiogenesis both *in vitro*^{25,26} and *in vivo*²⁷⁻²⁹. Matrigel matrix also supports *in vivo* propagation of human tumors in immunosuppressed mice³⁰⁻³².

CORNING

Wide Selection of Basement Membrane Matrices

Corning Matrigel Matrix Growth Factor Reduced is suited for applications where a more highly defined basement membrane preparation is desired. Available in standard Growth Factor Reduced (GFR), High Concentration (HC), and phenol red-free formats.

Corning Matrigel Matrix High Concentration is suited for *in vivo* applications where a high protein concentration augments growth of tumors. The high protein concentration also allows the Matrigel matrix plug to maintain its integrity after subcutaneous injection into mice. Available in standard, GFR, and phenol red-free formats.

Corning Matrigel Matrix Phenol Red-free is recommended for assays which require color detection (i.e., fluorescence).

Corning Matrigel hESC-qualified Matrix has been qualified as mTeSR®1-compatible by STEMCELL Technologies, thus eliminating the need for time-consuming screening in order to provide the reproducibility and consistency essential for your human embryonic stem (hES) cell research. The mTeSR1 formulation and Corning Matrigel matrix have been shown to be a successful combination for feeder-free maintenance of different WiCell[™] hES cell lines for up to 20 passages (mTeSR1, STEMCELL Technologies Cat. No. 85850).

Corning Matrigel Matrix for Organoid Culture is a solubilized basement membrane preparation that has been optimized for organoid culture. Verified to support both mouse and human organoid growth and differentiation from healthy and/or diseased tissue, each lot has a specific elastic modulus value indicating the stiffness of the gel formed and is qualified to form stable 3D domes commonly used in organoid culture protocols.

Corning Matrigel basement membrane matrix is a solubilized basement membrane preparation extracted from the Engelbreth-Holm-Swarm (EHS) mouse sarcoma, a tumor rich in extracellular matrix proteins to include laminin (a major component), collagen IV, heparan sulfate proteoglycans, and entactin/nidogen^{1,2}. Corning Matrigel matrix also contains TGF-beta, epidermal growth factor, insulin-like growth factor, fibroblast growth factor, tissue plasminogen activator^{3,4}, and other growth factors which occur naturally in the EHS tumor.

Typical Applications

Cell Growth and Differentiation

Corning[®] Matrigel[®] matrix is especially suited for the culture of polarized cells, such as epithelial cells. It promotes the differentiation of precursor cells into many cells types including hepatocytes, neurons, mammary epithelial, endothelial, and smooth muscle cells.

In Vivo Angiogenesis Studies

Corning Matrigel matrix HC can be used to assess *in vivo* angiogenic activity of different compounds by subcutaneous injection into mice (Matrigel plug assay). The plugs are subsequently removed and analyzed for the formation of blood vessels.

Augmentation of Tumor Growth in Nude Mice

Corning Matrigel matrix HC has been shown to promote successful transplantation of many human tumor cells including prostatic, breast, smallcell lung, colon, adrenal carcinomas, melanomas, and lymphoblastic leukemia cells. Also, it has been found to increase tumor growth rates *in vivo*.

Quality Control

- Mouse colonies are routinely screened for pathogens via Mouse Antibody Production (MAP) testing.
- Extensive PCR testing is performed to screen for a number of pathogens, including LDEV, to ensure strict control of raw materials used during the manufacturing process.
- Tested and found negative for bacteria, fungi, and mycoplasma.
- Protein concentrations are determined by Lowry method.
- Endotoxin units are measured by Limulus Amoebocyte Lysate assay.
- Corning Matrigel matrix gel stability is tested for a period of 14 days at 37°C.
- Biological activity is determined for each lot using a neurite outgrowth assay. Chick dorsal root ganglia are plated on a 1.0 mm layer of Corning Matrigel matrix and must generate positive neurite outgrowth response after 48 hours without addition of nerve growth factor.

Ordering Information

VWR Cat. No.	Corning Cat. No.	Description	Size	Qty/Cs
47743-706	356234	Corning Matrigel matrix, LDEV-free	5 mL	1
47743-715	354234	Corning Matrigel matrix, LDEV-free	10 mL	1
47743-716	356237	Corning Matrigel matrix, phenol red-free, LDEV-free	10 mL	1
47743-710	356235	Corning Matrigel matrix, LDEV-free, 50 mL (5 x 10 mL)	10 mL	5
75796-266	356232	Corning Matrigel matrix, LDEV-free, 25 mL (5 x 5 mL)	5 mL	5
75796-276	356254	Corning Matrigel matrix, LDEV-free, 100 mL (10 x 10 mL)	10 mL	10
47743-718	356230	Corning Matrigel matrix, GFR (growth factor reduced), LDEV-free	5 mL	1
47743-720	354230	Corning Matrigel matrix, GFR, LDEV-free	10 mL	1
47743-722	356231	Corning Matrigel matrix, GFR, phenol red-free, LDEV-free	10 mL	1
75796-272	356252	Corning Matrigel matrix, GFR, LDEV-free, 50 mL (5 x 10 mL)	10 mL	5
75796-274	356253	Corning Matrigel matrix, GFR, LDEV-free, 100 mL (10 x 10 mL)	10 mL	10
75796-268	356238	Corning Matrigel matrix, GFR, phenol red-free, LDEV-free, 50 mL (5 x 10 mL)	10 mL	5
75796-270	356239	Corning Matrigel matrix, GFR, phenol red-free, LDEV-free, 100 mL (10 x 10 mL)	10 mL	10
47747-220	354248	Corning Matrigel matrix, HC (high concentration), LDEV-free	10 mL	1
80094-328	354262	Corning Matrigel matrix, HC, phenol red-free, LDEV-free	10 mL	1
80094-330	354263	Corning Matrigel matrix, HC, GFR, LDEV-free	10 mL	1
BD354277	354277	Corning Matrigel matrix, hESC qualified, LDEV-free	5 mL	1
75796-278	356277	Corning Matrigel matrix, hESC-qualified, LDEV-free, 25 mL (5 x 5 mL)	5 mL	5
75796-280	356278	Corning Matrigel matrix, hESC-qualified, LDEV-free, 50 mL (10 x 5 mL)	5 mL	10
76332-052	356255	Corning Matrigel matrix for organoid culture, phenol red-free, LDEV-free	10 mL	1

Typical protein concentrations for Corning Matrigel matrix range between 7 to 12 mg/mL. Matrigel matrix High Concentration ranges from 18 to 22 mg/mL. In some instances, individual lots may fall outside this range. A lot-specific Certificate of Analysis is provided with each Corning Matrigel matrix lot noting exact endotoxin and protein concentrations.

References

- 1. Kleinman HK, et al. Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry, 21:6188 (1982).
- 2. Kleinman HK, et al. Basement membrane complexes with biological activity. Biochemistry, 25:312 (1986).
- 3. Vukicevic S, et al. Identification of multiple active growth factors in basement membrane Matrigel suggests caution in interpretation of cellular activity related to extracellular activity related to extracellular matrix components. Exp. Cell Res., 202:1 (1992).
- 4. McGuire PG and Seeds, NW. The interaction of plasminogen activator with a reconstituted basement membrane matrix and extracellular macromolecules produced by cultured epithelial cells. J. Cell. Biochem., 40:215 (1989).
- 5. Biederer T and Scheiffele P. Mixed-culture assays for analyzing neuronal synapse formation, Nature Protocols, 2(3):670 (2007).
- 6. Li Y, et al. Essential Role of TRPC channels in the guidance of nerve growth cones by brain-derived neurotrophic factor. Nature, 434:894 (2005).
- 7. Bi Y, et al. Use of cryopreserved human hepatocytes in sandwich culture to measure hepatobiliary transport. Drug Metabo. and Dispos., 34(9):1658 (2006).
- Hadley MA, et al. Extracellular matrix regulates sertoli cell differentiation, testicular cord formation, and germ cell development in vitro. J. Cell Biol., 101:1511 (1985).
- 9. Yu X, et al. Essential role of extracellular matrix (ECM) overlay in establishing the functional integrity of primary neonatal rat sertoli cell/gonocyte co-cultures: An improved in vitro model for assessment of male reproductive toxicity. Toxicol. Sci., 84(2):378 (2005).
- 10. Ireland ME. Quantification and regulation of mRNAs encoding beaded filament proteins in the chick lens, 16(8):838 (1997).
- McGuire PG and Orkin RW. A simple procedure to culture and passage endothelial cells from large vessels of small animals. Biotechniques, 5(6):456 (1987).
- Bissel DM, et al. Support of cultured hepatocytes by a laminin-rich gel. Evidence for a functionally significant subendothelial matrix in normal rat liver. J. Clinical Invest., 79:801 (1987).
- Page JL, et al. Gene expression profiling of extracellular matrix as an effector of human hepatocyte phenotype in primary cell culture. Toxicol. Sci., 97(2):384 (2007).
- 14. Li ML, et al. Influence of a reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells. Proc. Nat. Acad. Sci. USA, 84:136 (1987).
- Barcellof MH, et al. Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development, 105:223 (1989).
- Roskelley CD, et al. Extracellular matrix-dependent tissue-specific gene expression in mammary epithelial cells requires both physical and biochemical signal transduction. Proc. Nat. Acad. Sci. USA, 91(26):12378 (1994).

- 17. Xu R, et al. Extracellular matrix-regulated gene expression requires cooperation of SWI/SNF and transcription factors. J. Biol. Chem., 282(20):14992 (2007).
- Debnath J, et al. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods, 30(3):256 (2003).
- 19. Muthuswamy SK, et al. ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini. Nat. Cell Biol., 3(9):785 (2001).
- 20. Terranova VP, et al. Use of a reconstituted basement membrane to measure cell invasiveness and select for highly invasive tumor cells. Proc. Nat. Acad. Sci. USA, 83:465 (1986).
- 21. Albini A, et al. A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Research, 47:3239 (1987).
- Madison R, et al. Increased rate of peripheral nerve regeneration using bioresorbable nerve guides and laminin containing gel. Exp. Neurology, 88:767 (1985).
- Xu XM, et al. Axonal regeneration into Schwann cell-seeded guidance channels grafted into transected adult rat spinal cord. J. Comp. Neurol., 351(1):145 (1994).
- 24. Fouad K, et al. Combining schwann cell bridges and olfactory-ensheathing glia grafts with chondroitinase promotes locomotor recovery after complete transection of the spinal cord. J. Neurosci, 25(5):1169 (2005).
- 25. Kubota Y, et al. Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J. Cell Biol., 107:1589 (1988).
- 26. Maeshima Y, et al. Identification of the anti-angiogenic site within vascular basement membrane-derived Tumstatin. J. Biol. Chem., 276(18):15240 (2001).
- 27. Passaniti A, et al. A simple, quantitative method for assessing angiogenesis and anti-angiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab Invest., 67:519 (1992).
- 28. Isaji M, et al. Tranilast inhibits the proliferation, chemotaxis and tube formation of human microvascular endothelial cells in vitro and angiogenesis in vivo. Br. J. Pharmacol, 122:1061 (1997).
- Kisucka J, et al. Platelets and platelet adhesion support angiogenesis while preventing excessive hemorrhage. Proc. Nat. Acad. Sci. USA, 103(4):855 (2006).
- 30. Albini A, et al. Matrigel promotes retinoblastoma cell growth in vitro and in vivo. Int. J. Cancer, 52(2):234 (1992).
- Yue W, et al. MCF-7 human breast carcinomas in nude mice as a model for evaluating aromatase inhibitors. J. Steroid Biochem. Molec. Biol., 44(4-6):671 (1993).
- Angelucci A, et al. Suppression of EGF-R signaling reduces the incidence of prostate cancer metastasis in nude mice. Endocrine-Related Cancer, 13(1):197 (2006).

Warranty/Disclaimer: Unless otherwise specified, all products are for research use or general laboratory use only.* Not intended for use in diagnostic or therapeutic procedures. Not for use in humans. These products are not intended to mitigate the presence of microorganisms on surfaces or in the environment, where such organisms can be deleterious to humans or the environment. Corning Life Sciences makes no claims regarding the performance of these products for clinical or diagnostic applications. *For a listing of US medical devices, regulatory classifications or specific information on claims, visit www.corning.com/resources.

Corning's products are not specifically designed and tested for diagnostic testing. Many Corning products, though not specific for diagnostic testing, can be used in the workflow and preparation of the test at the customers discretion. Customers may use these products to support their claims. We cannot make any claims or statements that our products are approved for diagnostic testing either directly or indirectly. The customer is responsible for any testing, validation, and/or regulatory submissions that may be required to support the safety and efficacy of their intended application.

CORNING

For additional product or technical information, visit vwr.com/corning, call 1.800.932.5000, or contact your VWR representative.

For a listing of trademarks, visit www.corning.com/clstrademarks. All other trademarks are the property of their respective owners. © 2012-2022 Corning Incorporated. All rights reserved. 6/22 CLS-DL-CC-019 REV2 VWR