
BOLIDE Y-01
 Motion Editor programming

instruction

2

Program structure

Judge whether connect with motion editor or play
Sequence.

In motion editor
Judge whether BTLE is set or

not.

Judge remote control command is from

Play RCU
command

Play App
command

Judge command is from button or
RCU Joystick

Play button
command

Play joystick
command

yes

yes

no

no

(Serial.available() > 0 or seq_trigger == 1)

(Serial2.available() > 0)

(packet[1]!=255 &
packet[2]!=1)

(packet[1]==255 & packet[2]==1)

Initial Set Up

By joystick_status value

void

setup

void loop

3

void setup()

Command Function

AIM_Task_Setup() Motor transmission setting

BT_Task_Setup() Bluetooth transmission setting

Speaker_Task_Setup() Audio transmission setting

Eye_LED_Setup() Eyes LED pin setting

Buzzer_Setup() Buzzer initial setting

Button_Setup() Body buttons pin Initial setting

Analog_Input_Setup() Voltage and IR sensor pin
setting

Timer_Task_Setup() Interrupt Timer setting

_enable_timer4() Enable interrupt timer4

LED_Task() LED mode

Start_Music() Enable music

G_SENSOR_Task_Setup() G sensor initial setting

Initial_Pose_Setup() Robot motion to initial operation

4

void loop()

Command Function

Motion_Editor_Packet_Task() XYZrobot Editor driver

Motion_Editor_Seq_Play() Play XYZrobot Editor Sequence

※Do not modify function above, in case XYZrobot Edito rerror.

Editor Driver

Command Function

BT_Packet_Task() Read BT packet

joystick_status[] RCU joystick status

BT connection

5

void loop()

RCU

Judge condition

When pressed Release button

When pressed BT pair button

When pressed power button

Play initial Sequence

Torque off

6

void loop()

RCU

When pressed L1

When pressed L2

When pressed L3

When pressed R1

When pressed R2

When pressed R3

Command Function

Adjustment_index true，play get up Sequence；false，not thing happened

Falling_Task() Check robot is standing or not

Action() Play Sequence

Getup_Task() Play get up Sequence

7

void loop()

RCU

When RCU on the left joystick to the right.

When RCU on the left joystick to the left.

8

void loop()

RCU

Command Function

Avoidance_index true，Buzzer alert ；false，not thing happened

IR_SENSOR_Task() Detect obstacle

When RCU on the left joystick to the forward.

Buzzer alert when obstacle is in front of
IR sensor 20cm.

9

void loop()

RCU

When RCU on the left joystick to the back.

When RCU on the right joystick to the right.

10

void loop()

RCU

When RCU on the right joystick to the left.

When RCU on the right joystick to the forward.

When RCU on the right joystick to the back.

11

void loop()

APP Judge condition

Packet[3] Function

101 Play initial Sequence

102 All smart servos Torque
off

251 Feedback G sensor value

252 Feedback IR sensor value

253 Feedback firmware
version

1~54 Play relative XYZrobot
Editor Action List
sequence

Judge whether play
get up Sequence or
buzzer alert during
robot moving
forward.

void loop()

Button

Button been pressed or not

RCU joystick

When RCU on the left joystick to the right.

When RCU on the left joystick to the left.

void loop()

RCU joystick
When RCU on the left joystick to the forward.

When RCU on the left joystick to the back.

When RCU on the right joystick to the right.

void loop()

RCU joystick
When RCU on the right joystick to the left.

When RCU on the right joystick to the forward.

When RCU on the right joystick to the back.

Function

AIM_Task_Setup() Setup Smart servo A1-16 transmissions baud rate and
number

BT_Task_Setup() Setup BT Baud rate 9600

Speaker_Task_Setup() Setup Audio Baud rate 115200；
Setup pin of LED which on Audio PCB。

Eye_LED_Setup() Setup pin of eyes LED

Buzzer_Setup() Setup buzzer pin

Function

Button_Setup() Setup button pin

Analog_Input_Setup() Setup pin for voltage detect and pin of IR sensor

Timer_Task_Setup() Setup interruption of Timer

Function

G_SENSOR_Task_Setup() G sensor initial setting

Falling_Task() Check robot is standing or not

Detected value transfer to G

Function

Getup_Task() Play get up Sequence

IR_SENSOR_Task() Feedback IR sensor detected value

Initial_Pose_Setup() Play initial Sequence

Detected value transfer to
cm

Function

Action() Play

Read joystick status

Function

BT_Packet_Task() Read BT packet and torque emergency off judgment.

RCU Release button pressed or not

APP Release button pressed or not

Function

BT_Gsensor_Data() Transmitting G sensor data in BT packet.

Transmitting delay time
50ms is much stable in IOS
and Android.

Function

BT_IR_Data() Transmitting IR sensor data in BT packet.

BT_FW() Feedback firmware version in BT packet.

Function

MusicPlaying_wav_play() Play Audio，File name range from 0000~9999

MusicPlaying_wav_stop() Audio off

MusicPlaying_wav_volume() Adjust Audio volume，
value:0x01~0x7F

Start_Music() Power up music

Function

Button_Task() Button pressed setting

Power_Detection_Task() Low power detection

Function
LED_Task() LED mode

Turn Eyes LED on
LED_Task(1)

Turn both Eyes LED & chest LED on
LED_Task(2)

Turn chest LED on
LED_Task(3)

Turn LED off LED_Task(0)

Y-01_USER_MOTION.h

Official Version With G sensor and IR sensor function

Adjustment_index：true, enable G sensor function；false, disable G sensor
function

Avoidance_index：true, enable IR sensor function ；
 false, disable IR sensor function

* Y-01_USER_MOTION.h which export from XYZrobot Editor ,
 both Adjustment_index and Avoidance_index default are false， Sensors are disabled。

setup()
• The setup() function is called when a sketch starts. Use it to initialize

variables, pin modes, start using libraries, etc. The setup function will
only run once, after each power up or reset of the Arduino board.

Language reference (Structure)

loop()
• After creating a setup() function, which initializes and sets the initial

values, the loop() function does precisely what its name suggests, and
loops consecutively, allowing your program to change and respond.
Use it to actively control the Arduino board.

Language reference (Structure)

if / else
• if/else allows greater control over the flow of code than the

basic if statement, by allowing multiple tests to be grouped together.
For example, an analog input could be tested and one action taken if
the input was less than 500, and another action taken if the input was
500 or greater.

Language reference (Structure)

• else can proceed another if test, so that multiple, mutually exclusive
tests can be run at the same time.

• if (pinFiveInput < 500)

 {

 // do Thing A

 }

 else if (pinFiveInput >= 1000)

 {

 // do Thing B

 }

 else { // do Thing C }

Language reference (Structure)

do - while
• The do loop works in the same manner as the while loop, with the

exception that the condition is tested at the end of the loop, so
the do loop will always run at least once.

Language reference (Structure)

#Define
• #define is a useful C component that allows the programmer to give a name to a constant

value before the program is compiled. Defined constants in arduino don't take up any
program memory space on the chip. The compiler will replace references to these constants
with the defined value at compile time.

• This can have some unwanted side effects though, if for example, a constant name that had
been #defined is included in some other constant or variable name. In that case the text
would be replaced by the #defined number (or text).

• In general, the const keyword is preferred for defining constants and should be used instead
of #define.

• Arduino defines have the same syntax as C defines:

Language reference (Structure)

https://www.arduino.cc/en/Reference/Const

#include
• #include is used to include outside libraries in your sketch. This gives the programmer access

to a large group of standard C libraries (groups of pre-made functions), and also libraries
written especially for Arduino.

• Note that #include, similar to #define, has no semicolon terminator, and the compiler will
yield cryptic error messages if you add one.

Language reference (Structure)

Language reference (Structure)

INPUT
constants
• Constants are predefined expressions in the Arduino language. They are used to make the

programs easier to read. We classify constants in groups:
 Defining Logical Levels: true and false (Boolean Constants)
• There are two constants used to represent truth and falsity in the Arduino language: true,

and false.
• false is the easier of the two to define. false is defined as 0 (zero).
• true is often said to be defined as 1, which is correct, but true has a wider definition. Any

integer which is non-zero is true, in a Boolean sense. So -1, 2 and -200 are all defined as true,
too, in a Boolean sense.

• Note that the true and false constants are typed in lowercase unlike HIGH, LOW, INPUT,
and OUTPUT.

Language reference (Variables)

OUTPUT
constants
• Constants are predefined expressions in the Arduino language. They are used to make the

programs easier to read. We classify constants in groups:
 Defining Logical Levels: true and false (Boolean Constants)
• There are two constants used to represent truth and falsity in the Arduino language: true,

and false.
• false is the easier of the two to define. false is defined as 0 (zero).
• true is often said to be defined as 1, which is correct, but true has a wider definition. Any

integer which is non-zero is true, in a Boolean sense. So -1, 2 and -200 are all defined as true,
too, in a Boolean sense.

• Note that the true and false constants are typed in lowercase unlike HIGH, LOW, INPUT,
and OUTPUT.

Language reference (Variables)

float
Description

• Data type for floating-point numbers, a number that has a decimal point. Floating-point
numbers are often used to approximate analog and continuous values because they have
greater resolution than integers. Floating-point numbers can be as large as 3.4028235E+38
and as low as -3.4028235E+38. They are stored as 32 bits (4 bytes) of information.

• Floats have only 6-7 decimal digits of precision. That means the total number of digits, not
the number to the right of the decimal point. Unlike other platforms, where you can get more
precision by using a double (e.g. up to 15 digits), on the Arduino, double is the same size as
float

• Floating point numbers are not exact, and may yield strange results when compared. For
example 6.0 / 3.0 may not equal 2.0. You should instead check that the absolute value of the
difference between the numbers is less than some small number.

Language reference (Variables)

• Floating point math is also much slower than integer math in performing calculations, so
should be avoided if, for example, a loop has to run at top speed for a critical timing function.
Programmers often go to some lengths to convert floating point calculations to integer math
to increase speed.

• If doing math with floats, you need to add a decimal point, otherwise it will be treated as
an int.

Language reference (Variables)

PROGMEM
• Store data in flash (program) memory instead of SRAM.
• The PROGMEM keyword is a variable modifier, it should be used only with the datatypes

defined in Mask_Definition.h. It tells the compiler "put this information into flash memory",
instead of into SRAM, where it would normally go.

• PROGMEM is part of the Mask_Definition.h library that is available in the AVR architecture
only. So you first need to include the library at the top your sketch, like this:

• dataType variableName[] PROGMEM = {data0, data1, data3...};

Language reference (Variables)

• There are three pools of memory in the microcontrollers (e.g. theATmega168):
1.Flash memory (program space), is where the Arduino sketch is stored.
2.SRAM (static random access memory) is where the sketch creates and manipulates variables

when it runs.
3.EEPROM is memory space that programmers can use to store long-term information.
• Flash memory and EEPROM can’t chamemory are non-volatile (the information persists after

the power is turned off). SRAM is volatile and will be lost when the power is cycled.
Note: Flash (PROGMEM) memory can only be populated at program burn time. You nge the

values in the flash after the program has started running.
• The amounts of memory for various microcontrollers used on boards are as follows:

Memory

41

Thank You!

